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Despite evidence for a hydrodynamic origin of flagellar synchronization

between different eukaryotic cells, recent experiments have shown that in

single multi-flagellated organisms, coordination hinges instead on direct

basal body connections. The mechanism by which these connections lead

to coordination, however, is currently not understood. Here, we focus on

the model biflagellate Chlamydomonas reinhardtii, and propose a minimal

model for the synchronization of its two flagella as a result of both hydro-

dynamic and direct mechanical coupling. A spectrum of different types of

coordination can be selected, depending on small changes in the stiffness

of intracellular couplings. These include prolonged in-phase and anti-

phase synchronization, as well as a range of multi-stable states induced by

spontaneous symmetry breaking of the system. Linking synchrony to intra-

cellular stiffness could lead to the use of flagellar dynamics as a probe for the

mechanical state of the cell.
1. Introduction
Cilia and flagella are structurally identical, whip-like cellular organelles

employed by most eukaryotes for tasks ranging from sensing and locomotion

of single cells [1], to directing embryonic development [2] and driving cere-

brospinal fluid flow [3] in animals. Originally observed in 1677 by the

Dutch pioneer Antonie van Leeuwenhoek, groups of motile cilia and flagella

have a seemingly spontaneous tendency to coordinate their beating motion

and generate large-scale patterns known as metachronal waves [4]. Coordi-

nation has often been proposed to provide an evolutionary advantage by

improving transport and feeding efficiency [5–10], although estimates of the

magnitude of this effect are notoriously difficult. Despite the uncertainty on

its biological role, however, the universality of flagellar coordination is an

empirical fact, and it suggests the existence of a correspondingly general

mechanism for synchronization. Mechanical forces, transmitted either by the

surrounding fluid or internally through the cells, have often been proposed

as responsible for this coordination [11–15]. Understanding how synchroniza-

tion emerges could therefore highlight novel and potentially subtle roles

played by physical forces in cell biology. Here, we develop a minimal

model that links small changes in the mechanical properties of cells with

the dynamics of their protruding flagella. In turn, this approach could lead

to coordination being used as a probe to measure the internal mechanical

state of a cell.

Reports of coordinated motion in nearby swimming sperm [16,17] hint at

the importance of hydrodynamic coupling. Hydrodynamic-led coordination

of self-sustained oscillators, mimicking the active motion of cilia and flagella

[18,19], has been extensively investigated theoretically [12,20–22], numerically

[23–25], and experimentally with colloidal rotors [26,27] and rowers [28,29].

Despite the peculiar constraints of low-Reynolds number hydrodynamics, these
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Figure 1. Physical configuration. (a) Two external rotors (blue), moving in
the fluid, mimic the beating motion of flagellar filaments. Internal rotors
(red) represent the flagellar basal bodies and are coupled through an aniso-
tropic spring. (b) Anti-phase (AP) and (c) in-phase (IP) states. (Online version
in colour.)
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studies suggest that hydrodynamic interactions can lead to cili-

ary coordination when coupled to either a phase-dependent

driving force [12,21], or axonemal elasticity [30]. Indeed,

hydrodynamic-mediated synchronization has been confirmed

experimentally between pairs of eukaryotic flagella from

different somatic cells from the green alga Volvox carteri [14].

Inter-cellular coordination of flagella, however, does not

necessarily imply intracellular coordination, and therefore

it is not a priori clear whether hydrodynamic coupling is

also responsible for the synchronization observed in individ-

ual multi-flagellated cells. Experimental studies of flagellar

coordination within a single cell have focused mainly on

the biflagellate green alga Chlamydomonas reinhardtii (CR)

[31,32], whose flagella are usually locked in a characteristic

in-phase breaststroke motion. Early studies of flagellar

coordination in CR [33–35] were recently refined [11,36]

and extended [37] using microfluidic devices and high-speed

imaging of flagella [38]. These pointed at a fundamentally

hydrodynamic origin for the observed synchronization,

either through direct coupling or via a mechanism based on

cell-body rocking [13]. However, a series of elegant novel

experiments in CR and other flagellates challenged this

view convincingly, showing instead that coordination

requires the intracellular striated fibres that join flagellar

basal bodies [39,40]. For the CR mutant vfl3, with impaired

mechanical coupling and a variable number of flagella, syn-

chronization is completely disrupted [39] except for

sporadic periods of synchrony in cells with two close flagella

oriented in the same direction (see fig. S1 in [40]). Even

though the precise mechanism by which direct connections

affect flagellar coordination remains to be clarified [15], the

spontaneous transitions between extended in-phase (IP) and

anti-phase (AP) beating in the CR mutant ptx1 [41] already

suggest that multiple synchronization states should be achiev-

able through changes in the fibres’ mechanical properties

within the physiological range.

Here we propose a minimal model for flagellar dynamics

for CR which can sustain both stable IP and stable AP states

even in the absence of hydrodynamic coupling. Within this

framework, the phase dynamics are determined principally

by the mechanical state of the basal body fibres [42], with

both types of coordination possible within a physiological

range of fibre stiffnesses [43]. The inclusion of hydrodynamic

coupling leads to the emergence of a region in parameter

space where non-trivial states can emerge as a result of spon-

taneous symmetry breaking through pitchfork bifurcations of

limit cycles.
2. Minimal model and leading order dynamics
Figure 1a summarizes our minimal model of flagella coupled

through hydrodynamic and basal body interactions. Follow-

ing previous theoretical work [20,44], and experimental

measurements of flagellar flow fields and waveform elasticity

[14], the two flagella of Chlamydomonas are represented here

by two spheres of radius a, immersed in a three-dimensional

fluid of viscosity m, and driven around circular orbits of radii

Ri (i ¼ 1, 2) by constant tangential driving forces F(i)
int. Springs

of stiffness l resist radial excursions from the equilibrium

length R0; and the magnitude of the internal driving forces

F(i)
int ¼ 6pmaR0vi guarantees that, when isolated, the ith oscil-

lator will rotate at the intrinsic angular speed vi. The orbits
are centred along the x-axis, a distance l apart, and lie

along the xy plane. Polar and radial coordinates (fi, Ri)

define the oscillators’ instantaneous positions around the

centres of their respective orbits. We will refer to Ri(t) as

the external rotor radii.

Both hydrodynamic and direct elastic interactions couple

these minimal cilia. Hydrodynamic coupling is mediated by

the fluid disturbance generated by each sphere’s motion,

modelled here as the flow from a point force. These inter-

actions affect the instantaneous angular speeds _fi both

directly, through a hydrodynamic torque, and indirectly by

modifying the orbits’ radii. For counter-rotating oscillators

like those describing Chlamydomonas flagella, the resulting

effective coupling will promote AP synchronization

[15,41,44,45] (figure 1b). In addition to external flagellar inter-

actions, considerable evidence [39,40] suggests that flagellar

dynamics are strongly influenced by direct intracellular

mechanical coupling, through striated fibres joining the

basal bodies [33,46] that can lead the system to IP synchrony

(figure 1c). Intracellular connections are modelled here by

introducing, for each oscillator, an auxiliary arm of fixed

length s (� R0) at an angle u ahead of the rotating sphere.

The endpoints of these arms (red spheres in figure 1a) are

coupled via an anisotropic elastic medium acting as elastic

springs of stiffnesses (kx, ky) and equilibrium lengths (l, 0)

in the x and y directions, respectively. This is intended to rep-

resent the intrinsically anisotropic structure of the fibre

bundles connecting the basal bodies [42]. The equations of

motion, derived in electronic supplementary material, S1,

follow from the requirement of zero net force and torque on

each oscillator, and in the limit R0=l� 1 can be approximated

as (see electronic supplementary material, S1)

_f1¼
R0

R1
v1þr

R2

R1

_f2J(f1,f2)þr
_R2

R1
K(f1,f2)

þ s2

zR2
1

(kxþ ky)[G(f1þu,f2�u)�G(f1þu,f1þu)]

_f2¼
R0

R2
v2þr

R1

R2

_f1J(f2,f1)þr
_R1

R2
K(f2,f1)

þ s2

zR2
2

(kxþ ky)[G(f2�u,f1þu)�G(f2�u,f2�u)]

_R1¼�
l

z
(R1�R0)þrR2

_f2K(f2,f1)þr _R2H(f1,f2)

and _R2¼�
l

z
(R2�R0)þrR1

_f1K(f1,f2)þr _R1H(f2,f1),

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

ð2:1Þ
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Figure 2. Synchronization dynamics for pairs of model cilia in the absence of hydrodynamic interactions. Phase sum, s(t) ¼ f1(t)þ f2(t), for (a)
ky � kx ¼+10�2 Nm�1, (b) ky � kx ¼+10�3 Nm�1 and (c) ky � kx ¼+10�4 Nm�1. In each case (starting with f1(0) ¼ 0), IP (blue) and AP
(red) synchronized states are obtained for ky . kx and ky , kx , respectively, over a timescale inversely proportional to max(ky , kx ). (d ) Values of _s(s) measured
from numerical simulations (circles) compare favourably with equation (3.2) for sufficiently soft internal springs. Other model parameters as given in table 1. (Online
version in colour.)

Table 1. Minimal model parameters used throughout, unless stated
otherwise.

variable symbol value

model cilium radius [14] a 0:75 mm

interflagellar spacing l 15 mm

int./ext. rotor angle u 0

equilibrium external rotor radius R0 5mm

fixed internal rotor radius s 0:1mm

external spring stiffness [22] l 4� 10�7 Nm�1

�3
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where r¼ 3a=8l (r� 1 as a & R0); z¼ 6pma is the viscous drag

coefficient of the rotating sphere; and

J(a, b)¼ 3cos(a�b)� cos(aþb),

K(a, b)¼�3sin(a�b)� sin(aþ b),

H(a, b)¼ 3cos(a�b)þ cos(aþb)

and G(a, b)¼ 1

2

ky� kx

kxþ ky
sin(aþb)�1

2
sin(a�b):

9>>>>>>=
>>>>>>;

ð2:2Þ

In order to model the configuration typical of Chlamydomonas,
we will focus here on identical but counter-rotating oscillators,

v1¼�v2¼v. Parameter values are given in table 1 unless

otherwise specified.

viscosity of water m 10 Pa s

ciliary beat frequency [11] f ¼ v=2p 50 Hz
3. Fibres-only coupling
Despite the apparent simplicity, this minimal system displays

rich dynamics, and it is therefore convenient to analyse its be-

haviour following steps of increasing complexity. Let us

begin by considering the case in which hydrodynamic coup-

ling is completely neglected. The hydrodynamic drag is still

necessary for each model cilium (through z) in order to bal-

ance the driving force, but there is no direct hydrodynamic

coupling between the spheres. In this case, R1 ¼ R2 ¼ R0,

and recasting the angular dynamics in terms of phase sum

and difference (s, d) ¼ (f1 þ f2, f1 � f2), we obtain

_s ¼ (ky � kx)
2s2

zR2
0

sin2 d

2
þ u

� �
sin (s)

and _d ¼ 2v� s2

zR2
0

[(ky þ kx)þ (ky � kx) cos (s)] sin (dþ 2u):

9>>>>=
>>>>;

ð3:1Þ
Requiring that the maximal torque exerted on each oscillator

by the internal springs is always smaller than that from the

driving force (max(kx, ky)s2 , zR2
0v) guarantees that the cilia

will always be beating ( _d . 0), and defines a physiologically

plausible range for k’s, which in our case is kx,y & 10�2 Nm�1.

At the same time, unless kx ¼ ky, the system will monotoni-

cally converge to either IP (s ¼ p) or AP (s ¼ 0) synchrony,

depending on whether ky is larger or smaller than kx.

Figure 2a–c shows the convergence to either state, for a set

of initial conditions and increasing internal stiffnesses.

When kx,y & 10�3 Nm�1, the phase difference evolves much

faster than the sum, and s follows the approximate dynamics

_s ¼ (ky � kx)
s2

zR2
0

sin (s), ð3:2Þ
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as shown in figure 2d. The instantaneous and average phase

speed profile can be solved analytically (see electronic sup-

plementary material, S3). In the case of kx(in IP) . ky(in AP),

the model predicts a lower average phase speed in IP than

in AP which is in qualitative agreement with experimental

observations [41]. Recent studies argue that hydrodynamics

plays a negligible role in flagellar synchronization for single

cells [39,40]. Without hydrodynamics, our model predicts

that the effective interflagellar coupling should be given by

2pe ¼ ks2=vzR2
0. Using the known value for Chlamydomonas,

jej ≃ 0:015 [11,41], we obtain k ≃ 10�3 Nm�1. The Young’s

modulus for the bundle of striated fibres can then be

estimated as E ¼ kL=A, where L and A are the length and

cross-sectional area of the bundle, respectively. Taking

L ¼ 250 nm and A ¼ p � 252 nm2 results in the value

E ≃ 105 Pa [42,47]. This is a biologically plausible estimate,

midway between the elastic modulus of relaxed skeletal

muscle (E � 104 Pa) and elastin (E � 106 Pa) [43].
4. Stiff flagella hydrodynamics
We begin now to include the effect of hydrodynamic

interactions under the assumption of artificially stiff flagella,

implemented in this section by increasing the radial spring

stiffness to l ¼ 4� 10�6 Nm�1 (10� the value in table 1).

Increasing l reduces the typical response time of the radial

coordinate (z=l) and, when this is much smaller than the

angular timescale (2p=v), it allows us to simplify the

dynamics by assuming an instantaneous radial response
[44]. Then, to first order in the small parameter r, equations

(2.1) imply that s will obey

_s ¼ (ky � kx)
s2

zR2
0

� 2rv2z

l

� �
sin (s), ð4:1Þ

once the dynamics have been averaged over the fast variable

d. The coefficient of sin (s) above provides an intuitive

understanding of the roles of basal body coupling and

elasto-hydrodynamic interactions in determining the syn-

chronization state of the system, which is useful as a

general rule of thumb to assess the relative importance of

these phenomena even beyond the ‘stiff flagella’ case.

Within this approximation, hydrodynamics appears to

simply shift the location of the transition between AP and

IP states, determined by the steady state time average hsi,
from ky ¼ kx to ky ¼ kx þ 2r(R0=s)2(vz=l)2l. This is indeed

confirmed by simulations of the full system for large l (see

figure 4b).

A closer inspection, however, reveals more intriguing

dynamics which become particularly evident for small inter-

flagellar separations. Figure 3a–c shows the steady state

dynamics of s for l ¼ 15mm, as ky is swept across the tran-

sition. Between AP and IP coordination (figure 3a,c) there is

a distinct region of ky values for which the system synchro-

nizes in a non-trivial intermediate state (figure 3b). This is

accompanied by a permanent difference in the average

values of the oscillators’ radii (figure 3e), with the asymmetry

depending on which of the equally probable signs of hsi is

chosen by the system. Figure 3g shows the full positive
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branch of hsi as ky is swept between AP and IP values (simu-

lations: green solid line). This can be compared to the leading

order behaviour with and without hydrodynamics (black

dashed and solid lines); and the one predicted by refining

equation (4.1) to next-to-leading order in R0=l (black dotted

line; see electronic supplementary material, S2)

_s ¼ (ky � kx)
s2

zR2
0

� 2rv2z

l
1� 15

2

R2
0

l2
cos (s)

� �� �
sin (s): ð4:2Þ

The semi-quantitative agreement between the simulated and

predicted dependence of the steady state hsi extends also to

the ky-dependence of the time-averaged radii (figure 3h),

which follows in the same approximation

R1,2 ¼ R0 1 +
rvz

l
1� 15

2

R2
0

l2
cos (s)

� �
sin (s)

� �
: ð4:3Þ

Figure 4a shows that the agreement extends across the full

range of separations l � 15mm, with particularly accurate
estimates for the values of ky marking the beginning and

end of the transition (figure 4b). These results suggest that

the simple expression in equation (4.2) captures the essential

features of the dynamics and can therefore be used to ana-

lyse the nature of the transition. For small deviations dk in

ky around the transition from AP, equation (4.2) can be

approximated as

_s ≃ dk
s2

zR2
0

� �
s� 15

2

rv2z

l

R2
0

l2

� �
s3, ð4:4Þ

which therefore suggests that the emergence of non-trivial

coordination follows a supercritical pitchfork bifurcation

[48]. A similar argument leads to an equivalent conclusion

for the bifurcation from IP as ky is decreased. AP and IP

domains are therefore bounded by a pitchfork bifurcation

of limit cycles.

Within the intermediate regime, the system becomes natu-

rally bistable through a spontaneous symmetry breaking

from a state where both oscillators follow the same limit
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cycle to one where they sustain a stable difference in their

average oscillation amplitudes (see figure 3e). Transitions

between homogeneous and inhomogeneous oscillation

states, and bistability, have only recently been discovered in

pairs of coupled limit cycle oscillators, also as a consequence

of non-equilibrium symmetry breaking pitchfork bifurcations

[49,50]. Here, we discover their emergence in a simple model

of hydrodynamic- and basal body-coupled flagella. Inter-

mediate equilibrium states appear when the internal elastic

interaction promoting IP coordination is approximately com-

pensated by the leading order hydrodynamic coupling

favouring AP, amplifying the importance of higher-order

hydrodynamic effects. In this parameter range, the oscillators

are able to sustain a stable difference in their average ampli-

tude (external rotor radii). Interestingly, the permanent

difference in the average radii of the two oscillators after

the bifurcation could be easily interpreted by an observer as

a difference in intrinsic frequency (since v/ 1=R0). The

rotors would then appear intrinsically different despite in

fact being identical. Eventually, a sufficient increase of the

internal stiffness can overcome the antagonistic effect of

hydrodynamic interactions at any given separation l, and

drive the system to a stable IP state.
l ¼ 100 mm. White dotted lines correspond to the blue bifurcation plot
in figure 5c. For small kx, the system is capable of supporting intermediate
phase-locked states, with 0 , hs(t)i , p. However, for larger kx, an
abrupt transition between AP and IP occurs. (Online version in colour.)
5. The full model

We conclude by looking at the full system with realistic par-

ameters throughout (see table 1). In this case, radial and

phase dynamics have comparable timescales (zv=2pl � 2)

and the radii cannot be considered as approximately slaved

to the phases anymore. Together with the sizeable radial

deformations (dR=R0 � R0=2l here and � 0:2 for Chlamydomo-
nas-like l ¼ 15mm) this results in a complex interplay

between radial and phase variables and implies the need to

consider the full system of governing equations (see elec-

tronic supplementary material, S1). These will be explored

here through numerical simulations only.

Figure 5a,b shows a representative set of curves for a ky

sweep with kx ¼ 5� 10�3 Nm�1 and l ¼ 15mm. Electronic

supplementary material movies 1–5 show the dynamics for

(i)–(v) respectively. Similarly to the case of stiffer flagella,

low and high values of ky correspond, respectively, to AP

(i) and IP (v) synchronization, and in each of these states

the oscillators follow the same dynamics as one another.

The average phase speed, however, is observed to be lower

in IP than in AP (a difference of � 13% between

ky ¼ 0 Nm�1 and ky ¼ 0:02 Nm�1), in qualitative agreement

with experimental observations of CR mutants [41] (see elec-

tronic supplementary material, S3). In between, there is a

range of ky values for which the system synchronizes

around intermediate values of hsi, with the two oscillators

following again different limit cycles (iii,iv). A new state,

however, appears as ky approaches the symmetry breaking

transition from the AP side (ii). Despite corresponding for-

mally to AP (hsi ¼ 0), the system displays symmetric

excursions in the relative phase difference which are long

lived and not much smaller than p. In this state, the oscil-

lators spend most of their time at values of s far from 0,

and the null average is only guaranteed by the symmetry

of the dynamics. Although the system oscillates here by

about p=3, amplitudes � p can be easily obtained just by

increasing a (electronic supplementary material, figure S2).
In this condition, the system will not appear synchronized

in AP at all, but will rather be continuously alternating

between IP at p and IP at �p. Figure 5c,e shows that this situ-

ation is typical for all of the separations displaying a

discontinuous, rather than continuous, transition out of the

AP state (here all l � 35mm). In the IP case, instead, the tran-

sition maintains its continuous nature throughout, and in fact

the bifurcation point is still well predicted by the first order

expression from equation (4.1) (see inset).

From the AP side, discontinuous transitions are always

preceded by a region of ky values where the system displays

large excursions in s, which act as a predictor of the impend-

ing discontinuity [51]. Figure 5e shows the variance,

hs(t)2i � hs(t)i2, of the time-dependent signal, s(t), averaged

over 7 s (. 300 beats). The large excursions evident in figure

5a(ii) manifest in the peak of figure 5e.

The presence of the discontinuity in hsi and the preceding

large fluctuations depend on both the separation l and kx, as

shown in figure 6 for a (kx, ky) parameter sweep. For the realis-

tic interflagellar separation (l ¼ 15mm), figure 6a shows that

the region of discontinuous transition out of AP, marked by

the large standard deviation of s(t), exists only for

kx & 9� 10�3 Nm�1. Above this value, the bifurcation changes

its nature and becomes continuous but sharp. At the slightly

larger separation of l ¼ 25mm, the width of the extended tran-

sition zone observed previously for kx & 9� 10�3 Nm�1 is

reduced (see figures 6b, 5c). Further increasing the separation

to l ¼ 100mm reduces hydrodynamic forces by an order of

magnitude compared to the l ¼ 15mm case, and for all the

kx values explored, the system follows a sharp continuous

transition from AP to IP as ky is increased.

Although exploring in detail the nature of these bifur-

cations is beyond the scope of the present work, clear

similarities with the case of stiff flagella suggest strongly
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that the qualitative nature of the continuous transition is the

same in the two cases. We expect therefore the continuous

transitions to be supercritical pitchfork bifurcations of limit

cycles, inducing the observed symmetry breaking in the

system (figure 5a(iii– iv)). For l � 35mm, the emergence of

a discontinuity in hsi implies that decreasing kx can

change the nature of the transition. Looking closely at the

discontinuous case, we find that there is an extended

region of overlap between the hsi ¼ 0 and the intermediate

hsi branches (see electronic supplementary material, S5).

This is typical of a catastrophe-like transition which, given

the s$ �s symmetry of the system, is likely to be a subcritical

pitchfork bifurcation.

Coexistence of three different states, all of which are

locally stable for the dynamics, means that the system dis-

plays multi-stability: presence of noise might then induce

the system to jump between these locally stable states and

therefore alternate between periods of AP synchronization

an other non-trivial types of coordination, with transitions

dictated by escape rate arguments [52–54].
0

6. Conclusion
While mechanisms for hydrodynamic-led synchronization of

cilia and flagella have been extensively studied

[12,14,20,21,23–27,55], the impact of direct intracellular con-

nections on flagellar dynamics is only starting to be

recognized [15,39,40]. Here we have extended a simple and

popular minimal model for the hydrodynamically interacting

flagella pair of Chlamydomonas to account for intracellular

mechanical coupling. The clearly anisotropic ultrastructure

of striated fibres [42] is mirrored in the use of a non-isotropic

elastic interaction between the oscillators (kx = ky) and

results in a phase–phase coupling that can promote by itself
either IP or AP synchronization, within a biologically plaus-

ible range of Young’s moduli. Transitions would then result

simply through changes in the relative magnitude of kx and

ky. Given that intracellular calcium can control the contraction

of striated fibres in Chlamydomonas [56], we hypothesize that

the transitions in coordination observed experimentally could

be the result of localized apical variations in cytoplasmic

[Ca2þ] [57–59]. Natural extensions of this model to
amplitude–phase coupling do not influence the leading

order coordination dynamics (see electronic supplementary

material, S1, for brief discussion) and have been omitted

here. IP coordination has recently been proposed to result

from a different nonlinear interplay between hydrodynamic

and intracellular mechanical coupling [15], with AP due to

either one of them operating in isolation. However, several

experimental observations, from the absence of phase-locking

in mutants lacking striated fibres [39,40], to the complex syn-

chronization observed in multi-flagellated algae [40], suggest

that hydrodynamics plays in fact only a minimal role in this

system. The model introduced here can sustain both AP and

IP states without the need for external coupling, through a

mechanism potentially under the direct control of the cell.

Unequal tightening of the different fibres joining the basal

bodies of cells with more than two flagella could then lead

to the complex synchronization patterns observed experimen-

tally [40]. Yet, subtle hydrodynamic effects can exist and need

to be investigated through dedicated experiments blocking

fluid-mediated coupling between flagella. These are currently

underway.

With coordination of cilia and flagella within single cells

being sensitive to the direct intracellular coupling between

the filaments, we believe that better understanding its emer-

gence will eventually enable synchronization to be used as a

new and sensitive probe for the intracellular mechanical state

of a cell.
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20. Vilfan A, Jülicher F. 2006 Hydrodynamic flow
patterns and synchronization of beating cilia. Phys.
Rev. Lett. 96, 058102. (doi:10.1103/PhysRevLett.96.
058102)

21. Uchida N, Golestanian R. 2012 Hydrodynamic
synchronization between objects with cyclic rigid
trajectories. Eur. Phys. J. E 35, 135. (doi:10.1140/
epje/i2012-12135-5)

22. Brumley DR, Polin M, Pedley TJ, Goldstein RE. 2012
Hydrodynamic synchronization and metachronal
waves on the surface of the colonial alga Volvox
carteri. Phys. Rev. Lett. 109, 268102. (doi:10.1103/
PhysRevLett.109.268102)

23. Lagomarsino MC, Jona P, Bassetti B. 2003
Metachronal waves for deterministic switching two-
state oscillators with hydrodynamic interaction. Phys.
Rev. E 68, 021908. (doi:10.1103/PhysRevE.68.021908)

24. Lenz P, Ryskin A. 2006 Collective effects in ciliar
arrays. Phys. Biol. 3, 285 – 294. (doi:10.1088/1478-
3975/3/4/006)

25. Wollin C, Stark H. 2011 Metachronal waves in a chain
of rowers with hydrodynamic interactions. Eur.
Phys. J. E 34, 42. (doi:10.1140/epje/i2011-11042-7)

26. Brumley DR, Bruot N, Kotar J, Goldstein RE, Cicuta
P, Polin M. 2016 Long-range interactions, wobbles,
and phase defects in chains of model cilia. Phys.
Rev. Fluids 1, 081201(R). (doi:10.1103/
PhysRevFluids.1.081201)

27. Kotar J, Leoni M, Bassetti B, Lagomarsino MC,
Cicuta P. 2010 Hydrodynamic synchronization of
colloidal oscillators. Proc. Natl Acad. Sci. USA 107,
7669 – 7673. (doi:10.1073/pnas.0912455107)
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