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The ability to calculate flows generated by oscillating cylinders immersed in fluid is a cornerstone
in micro- and nanodevice development. In this article, we present a detailed theoretical analysis of
the hydrodynamic load experienced by an oscillating rigid cylinder, of arbitrary rectangular cross
section, that is immersed in an unbounded viscous fluid. We also consider the formal limit of
inviscid flow for which exact analytical and asymptotic solutions are derived. Due to its practical
importance in application to the atomic force microscope and nanoelectromechanical systems, we
conduct a detailed assessment of the dependence of this load on the cylinder thickness-to-width
ratio. We also assess the validity and accuracy of the widely used infinitely-thin blade
approximation. For thin rectangular cylinders of finite thickness, this approximation is found to be
excellent for out-of-plane motion, whereas for in-plane oscillations it can exhibit significant error. A
database of accurate numerical results for the hydrodynamic load as a function of the
thickness-to-width ratio and normalized frequency is also presented, which is expected to be of
value in practical application and numerical benchmarking. © 2010 American Institute of Physics.
�doi:10.1063/1.3397926�

I. INTRODUCTION

The dynamic response of elastic beam resonators is used
in a host of practical applications, including the ultrasensitive
measurement of mass using nanoelectromechanical systems
�NEMS�1–3 and microfluidic devices,4,5 detection of fluid
properties using microcantilever sensors,6 and force mea-
surement using the atomic force microscope �AFM�.7,8 It is
widely recognized that the frequency response of such elastic
bodies can depend strongly on the fluid in which they are
immersed, and over the past decade there have been a num-
ber of theoretical treatments of this problem, with particular
emphasis given to cantilever beams.9–15 Many of these theo-
retical models are also applicable to elastic beams under dif-
ferent clamp conditions, as discussed in Ref. 16.

Intrinsic to these theoretical treatments is the approxima-
tion of the hydrodynamic load at any section along the de-
forming elastic beam by the two-dimensional flow generated
by a corresponding rigid cylinder �of identical cross section
and oscillation amplitude�, the theoretical basis of which is
discussed in Ref. 14. This approximation has been validated
by numerous workers using both numerical simulations of
the full three-dimensional flow9 and experiment.17 In many
cases, the oscillating cylinders are considered to be suffi-
ciently thin so as to facilitate the use of a model involving an
infinitely thin blade.9–16 This “infinitely thin” model has
found great utility in analyzing practical device behavior and
is the basis of many theoretical treatments of cantilever
beams immersed in fluids. These include studies of proxim-
ity effects to solid surfaces10,12,18 and hydrodynamic cou-
pling between arrays of micromechanical oscillators.19 Im-
portantly, however, many devices also possess beams whose
thickness-to-width ratio draws into question the validity of

this infinitely thin approximation. This is particularly the
case in NEMS devices, which can exhibit thicknesses com-
parable to the beam width.20–23 No model for this important
practical case exists currently, and the precise regime under
which the infinitely thin model holds is unknown.

In this article, we investigate the practical case of an
oscillating �rigid� cylinder of arbitrary rectangular cross sec-
tion immersed either in an inviscid or a viscous fluid, and
thus address this important gap in the literature. The follow-
ing terminology shall be used: �i� a “beam” shall henceforth
refer to an elastic �deformable� beam, �ii� a “cylinder” refers
to a rigid cylinder, the cross section of which is arbitrary, and
�iii� a “blade” is a rectangular cylinder of zero thickness.

Developments in NEMS technologies have also facili-
tated the use of vibration modes not commonly addressed in
the literature, e.g., see Bargatin et al.21 who studied both the
in-plane and out-of-plane motions of moderately thin silicon-
carbide beams. These devices were actuated thermoelasti-
cally at room temperature and their motion detected
piezoresistively.21 Such strain sensing allows for great flex-
ibility in detection, and thus operation using a wider range of
modes than that achievable using more conventional detec-
tion schemes, such as optical interferometry and optical lever
sensing. Analysis of the in-plane oscillation of thin beams in
viscous fluids is an outstanding problem that is critical to
understanding the operation of these new technologies.

We systematically study the oscillation of rectangular
cylinders of arbitrary aspect ratio �thickness/width� im-
mersed in unbounded viscous fluids by adopting and extend-
ing the boundary integral technique of Tuck.24 We also con-
sider the limiting cases of an infinitely thin blade, where the
direction of motion is in-plane and out-of-plane to the blade
surface. The latter case was originally studied numerically by
Tuck, and an exact analytical solution to this problem ap-
peared recently.25 This exact solution will be used as aa�Electronic mail: jsader@unimelb.edu.au.
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benchmark to assess the accuracy of the present numerical
scheme. We also improve on the original numerical approach
of Tuck using the process of Richardson extrapolation.26 This
greatly accelerates convergence and allows achievement of
high accuracy in the numerical results while using moderate
mesh spacing. The presented database of numerical results
�in Sec. III� is expected to facilitate practical application and
allow for benchmarking of future analytical and numerical
investigations.

The corresponding formal limit of inviscid flow is solved
using the method of conformal mapping.27 An exact analyti-
cal solution for the hydrodynamic load is obtained in this
case, from which asymptotic results are derived for thin cyl-
inders executing in-plane and out-of-plane oscillations.
These results establish that previous heuristic
approximations28–30 for the effect of finite thickness do not
exhibit the correct functional forms, as we shall discuss.

Importantly, we find that use of the infinitely thin ap-
proximation yields accurate results for out-of-plane motion
of moderately thin rectangular cylinders over a large range of
aspect ratios �thickness/width�. Conversely, in-plane motion
of such cylinders is found to be poorly described by the
infinitely thin model. The underlying physical mechanisms
giving rise to this differing behavior are explored.

The findings of this article have significant implications
to AFM cantilever characterization methods that assume an
infinitely thin geometry,31–35 and NEMS devices which are
intrinsically capable of probing both in-plane and out-of-
plane motion sensing,21 as we shall discuss. The present the-
oretical model allows for calculation of both inertial and dis-
sipative forces generated by the fluid, and is thus expected to
find utility in a host of applications involving oscillating
elastic beam resonators.

We begin with the principal underlying assumptions of
the model in Sec. II. A short review of the boundary integral
method of Tuck24 is then presented, which is followed by its
application to a cylinder of arbitrary rectangular cross sec-
tion. Use of Richardson extrapolation in this method is then
discussed. Results arising from these numerical investiga-
tions are presented in Sec. III and their implications ex-
plored. Solutions for infinitely thin blades undergoing in-
plane and out-of-plane oscillations, and exact analytical and
asymptotic solutions for inviscid flow of a rectangular cylin-
der of arbitrary aspect ratio, are relegated to the Appendixes
A and B.

II. THEORETICAL MODEL

A schematic diagram of the cylinder cross section is
given in Fig. 1�a�. The cylinder is immersed in an unbounded
quiescent fluid, and the flow problem is assumed to satisfy
the following constraints:

�1� The cylinder is assumed to be of infinite extent perpen-
dicular to its cross section, i.e., in the x-direction;

�2� the cross section of the cylinder is rectangular and uni-
form along its length;

�3� the cylinder is executing oscillations in the y-direction,
normal to its longitudinal axis;

�4� the oscillation amplitude is small, so that the Navier–

Stokes equation can be linearized; see Ref. 14 for a dis-
cussion of the practical implications of this assumption.

In contrast to previous theoretical models,9–15 the aspect
ratio h /b is taken to be arbitrary; see Fig. 1�a�. The fluid is
also assumed to be incompressible, which is a valid approxi-
mation in many cases of practical interest;14 for a discussion
of compressibility effects, see Ref. 16.

Since we are interested in the flow generated by small
amplitude oscillations of the cylinder, we take the Fourier
transform of the incompressible linearized Navier–Stokes
equations, yielding

� · û = 0, − �p̂ + ��2û = − i��û , �1�

where

Ẑ = �
−�

�

Zei�tdt

for any function of time Z, and i is the usual imaginary unit.
Henceforth, we shall omit this superfluous “hat” notation,
since all results shall be presented in the frequency domain.
The vector u is the velocity field, p is the pressure, � is the
density of the fluid, and � its shear viscosity.

The hydrodynamic force per unit length, Fhydro, experi-

enced by the cylinder can be nondimensionalized14 to give

Fhydro =
�

4
��2X2����Wcyl, �2�

where ���� is the “hydrodynamic function” which is a
complex-valued dimensionless function, and Wcyl is the dis-
placement amplitude of the cylinder in the same direction as
the force, i.e., in the y-direction. The constant X is the domi-
nant length scale of the flow, which is taken to be max�h ,b�,
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FIG. 1. �a� Schematic diagram showing the cross section of the rectangular
cylinder. The origin of the coordinate system is located at the geometric
center of the cylinder cross section. �b� Figure showing integration contour
and dimensions used in boundary integral formulation for the oscillation of
a rectangular cylinder of finite thickness. The origin of the coordinate sys-
tem is located at the geometric center of the cross section.
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see Fig. 1�a�. The real and imaginary components of the
hydrodynamic function represent the added apparent mass
�inertial� and dissipative �damping� components of the load.

Tuck24 gave a two-dimensional streamfunction represen-
tation of Eq. �1� for the flow generated by a cylinder of
arbitrary cross section executing small amplitude oscillations
in an unbounded quiescent fluid,

� = �
C
��Gn − �n� − 	
n +

1

�
p
l�dl , �3�

where the contour C coincides with the surface of the cylin-
der and encompasses the entire fluid domain.18,24 The
streamfunction � satisfies �4�=�2�2�. In Eq. �3�, the sub-
scripts l and n represent the derivatives tangential and nor-
mal to C, respectively, and 	 is the component of the vortic-
ity in the x-direction. The function 
 is the corresponding
Green’s function for the streamfunction, and thus satisfies
�4
−�2�2
=�. A solution to this equation is24


 = −
1

2��2 �log��R� + K0��R�� , �4�

where K0 is the modified Bessel function of the third kind,
zeroth order.36 In Eq. �4�, �2=−i� /
 and R
=��y−y��2+ �z−z��2. The parameter 
 is the kinematic vis-
cosity of the fluid and � is the angular frequency at which
the cylinder oscillates. We also have

G =
1

2�
log��R�, � = −

1

2�
K0��R� ,

where �2�−�2�=��y−y����z−z�� and 
= �1 /�2���−G�.
The Green’s function G satisfies the two dimensional equa-
tion, �2G=��y−y����z−z��.

It is convenient to pose the problem in the noninertial
reference frame of the cylinder, since its surface then consti-
tutes a single streamline; the value of the corresponding
streamfunction at the cylinder surface is set to zero. Physi-
cally, this reference frame corresponds to a stationary cylin-
der immersed in an unbounded fluid that is oscillating at
angular frequency �. In this noninertial reference frame, the
reduced fluid velocity u is related to the true fluid velocity
u by

u = u + ucyl, �5�

where ucyl is the true velocity of the cylinder surface. The
“overscore” shall henceforth refer to reduced variables in this
noninertial frame of reference.

The corresponding boundary conditions for the reduced
velocity are

u = 	0 , at cylinder surface �no-slip� ,

− ucyl, at infinity.

 �6�

Substituting Eq. �5� into Eq. �1� then yields

− i��u = − �p̄ + ��2u , �7�

where the reduced pressure p̄ is related to the true pressure
p by

p̄ = p − i��Ucyly , �8�

and Ucyl is the y-component of the cylinder velocity, as the
cylinder is taken to be oscillating in this direction—this
choice is arbitrary and the z-direction could have been
equivalently chosen. The governing flow equation remains
unchanged except for the inclusion of an extra body force
term due to use of a noninertial frame of reference, as speci-
fied in Eq. �8�.

Following the boundary integral formulation of Tuck24

for the reduced governing equation, Eq. �7�, the streamfunc-
tion in this noninertial reference frame then satisfies

�̄�y�,z�� = − Ucylz� + �
Ccyl

�− 	̄
n +
1

�
p̄
l�dl , �9�

where we have used the fact that �̄ and �̄n are both identi-
cally zero at the cylinder surface. The integral in Eq. �9� is
the disturbance flow due to the presence of the cylinder. In
the absence of the cylinder, the integral in Eq. �9� vanishes
and we are left with the streamfunction corresponding to
uniform �rigid-body� oscillatory flow.

The vector force F acting on any three-dimensional body
with surface S, moving in any manner in an unbounded qui-
escent incompressible fluid, is given by24

F = �
S

�− pdS + �� � dS� .

The component of the force in the y-direction �the direction
of motion� is then

Fy = j · F = �
Ccyl

�− pdz + �	dy� , �10�

where Ccyl is the cylinder surface. Comparing Eq. �10� with
Eq. �2�, and noting that Ucyl=−i�Wcyl, we obtain the re-
quired result for the hydrodynamic function in the
y-direction,

���� = −
4i

���X2Ucyl
�

Ccyl

�− pdz + �	dy� . �11�

Since the problem is linear, Eq. �11� is independent of the
oscillation amplitude.

A. Cylinder of arbitrary rectangular cross section

We now apply the above formulation to a cylinder of
rectangular cross section executing small amplitude oscilla-
tions in the y-direction under the conditions detailed above.
The contour of integration used in the boundary integral for-
mulation, Eq. �9�, is illustrated in Fig. 1�b� and specified by
Ccyl=C1+C2+C3+C4. The side dimensions of the cylinder
have been denoted a and d, and are related to the thickness h
and width b, respectively, by a factor of 1/2. This allows for
the same oscillation direction to be used throughout, as
specified in Fig. 1�b�, while choosing a different dominant
length scale corresponding to the width or thickness. This
notation is chosen purely for convenience. Although the mo-
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tion of the beam is restricted to the y-direction, we can in-
vestigate either in-plane or out-of-plane motion simply by
choosing h�b or h�b, respectively.

Henceforth, the faces C1 and C2 as depicted in Fig. 1�b�
will be referred to as the leading and side faces, respectively.
We consider the reduced problem and work in the noninertial
reference frame of the cylinder, i.e., the cylinder is stationary
and the unbounded fluid is oscillating. Without loss of gen-
erality, we initially consider 2a to be the dominant length
scale, as illustrated in Fig. 1�b�. The appropriate boundary
conditions for the fluid at the cylinder surface are given in
Eq. �6�. We also make use of the fact that the pressure on the
surface of the cylinder is symmetric about the y-axis and
antisymmetric about the z-axis. Conversely, the vorticity at
the surface is antisymmetric about the y-axis and symmetric
about the z-axis. These symmetry conditions can be easily
derived from the Navier–Stokes equation.25 The aspect ratio
�thickness/width� of the cylinder is defined as

A �
a

d
=

h

b
. �12�

Scaling the spatial dimensions by a, we obtain �=y /a and
�=z /a. From this scaling, it follows that �� �−1,1� and �
� �−1 /A ,1 /A�. We also define the dimensionless frequency,
�=�a2 /
; this parameter is also commonly referred to as the
Reynolds number, inverse Stokes parameter, or Womersley
number. The reduced pressure and vorticity are scaled ac-
cording to

P1��� =
a

�Ucyl
p̄1�z�, �1��� =

a

Ucyl
	̄1�z� ,

�13�

P2��� =
a

�Ucyl
p̄2�y�, �2��� =

a

Ucyl
	̄2�y� .

Upon application of the appropriate boundary conditions, Eq.
�9� yields the following pair of coupled integral equations:

1 = �
−1/A

1/A

��1����
̃�����=1 − 
̃�����=−1�

+ P1����
̃�����=1 + 
̃�����=−1��d�

+ �
−1

1

��2����
̃�����=1/A + 
̃�����=−1/A�

+ P2����
̃�����=−1/A − 
̃�����=1/A��d� , �14�

0 = �
−1/A

1/A

��1����
̃�����=1 − 
̃�����=−1�

+ P1����
̃�����=1 + 
̃�����=−1��d�

+ �
−1

1

��2����
̃�����=1/A + 
̃�����=−1/A�

+ P2����
̃�����=−1/A − 
̃�����=1/A��d� , �15�

where the right hand sides of the above equations are evalu-
ated on the faces of the cylinder. These equations contain the

nondimensionalized Green’s function 
̃=
 /a2.
To solve Eqs. �14� and �15�, we discretize the integrals to

obtain a system of linear equations. The expected square-root
singularities in the pressure and vorticity at the corners of the
cylinder cross section24 are handled using the quadrature
�m=−�1 /A�cos��m /M� and �n=−cos��n /N�, where m
=0,1 , . . . ,M and n=0,1 , . . . ,N. Provided the discretization
is sufficiently fine, the pressure and vorticity can then be
approximated to be constant in each interval, i.e., P1���
= P1,m and �1���=�1,m for �m����m+1 and P2���= P2,n

and �2���=�2,n for �n����n+1. Equations �14� and �15�
thus become



m=0

M−1

��1,mI1���,��� + P1,mI2���,����

+ 

n=0

N−1

��2,nI3���,��� + P2,nI4���,���� = 1, �16�



m=0

M−1

��1,mJ1���,��� + P1,mJ2���,����

+ 

n=0

N−1

��2,nJ3���,��� + P2,nJ4���,���� = 0, �17�

where

I1���,��� = �
�m

�m+1

�
̃�����=1 − 
̃�����=−1�d� ,

I2���,��� = �
�m

�m+1

�
̃�����=1 + 
̃�����=−1�d� ,

I3���,��� = �
�n

�n+1

�
̃�����=1/A + 
̃�����=−1/A�d� ,

I4���,��� = �
�n

�n+1

�
̃�����=−1/A − 
̃�����=1/A�d� ,

�18�

J1���,��� = �
�m

�m+1

�
̃�����=1 − 
̃�����=−1�d� ,

J2���,��� = �
�m

�m+1

�
̃�����=1 + 
̃�����=−1�d� ,

J3���,��� = �
�n

�n+1

�
̃�����=1/A + 
̃�����=−1/A�d� ,

J4���,��� = �
�n

�n+1

�
̃�����=−1/A − 
̃�����=1/A�d� .
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To close the system, we then demand that Eqs. �16� and �17�
hold at the midpoint of each segment on the discretized in-
tervals, i.e., ��� ,���= ��k� ,1 /A�= ���k+�k+1� /2,1 /A� and

��� ,���= �1,� j��= �1, �� j +� j+1� /2� for k=0, . . . ,N−1 and j
=0, . . . ,M −1. Applying these conditions to Eqs. �16� and
�17� yields a matrix-vector equation

�
�I1�1,� j��� jm �I2�1,� j��� jm �I3�1,� j��� jn �I4�1,� j��� jn

�I1��k�,
1
A��km �I2��k�,

1
A��km �I3��k�,

1
A��kn �I4��k�,

1
A��kn

�J1�1,� j��� jm �J2�1,� j��� jm �J3�1,� j��� jn �J4�1,� j��� jn

�J1��k�,
1
A��km �J2��k�,

1
A��km �J3��k�,

1
A��kn �J4��k�,

1
A��kn

���1

P1

�2

P2

� = �
1

1

]

1

0

0

]

0

� . �19�

Interestingly, the majority of integrals in Eq. �18� can be
evaluated analytically without recourse to numerical meth-

ods by noting that 
̃����� ,� ;�� ,���=
̃����� ,� ;�� ,���,

̃���� ,� ;�� ,���=−
̃��� ,� ;�� ,���, and 
̃���� ,� ;�� ,���
=−
̃��� ,� ;�� ,���. All but two of the integrals in Eq. �18�
can be evaluated analytically through use of these symmetry
conditions. The integrals I3 and J1 are more stubborn and we
must resort to numerical integration. MATHEMATICA

® was
used in construction of the matrix system, Eq. �19�, and for
numerical evaluation of all functions.

Calculation of the hydrodynamic function follows di-
rectly from Eq. �11� in conjunction with the computed values
of the pressure and vorticity. Recalling that �=�a2 /
, we
find

���� =
2i

����−1/A

1/A

P���d� + �
−1

1

����d�� −
4

�A
, �20�

whose discrete form is

���� =
2i

��
�


m=0

M−1

��m+1 − �m�Pm + 

n=0

N−1

��n+1 − �n��n�
−

4

�A
+ O�N−2� , �21�

where the constant term involving the aspect ratio A arises
from the choice of a noninertial reference frame in the
formulation.

Clearly, if 2d is chosen as the dominant length scale then
Eq. �21� can be trivially modified. Since the dominant length
scale will be chosen to be the larger of 2a and 2d, Eq. �21�
can be generalized to give

���� =
2i

��
�


m=0

M−1

��m+1 − �m�Pm + 

n=0

N−1

��n+1 − �n��n�
−

4

�
min�A,

1

A
� + O�N−2� , �22�

where

� =
��2



�23�

and �=max�a ,d�. In presenting Eqs. �21� and �22�, we have
implicitly assumed that M �N so that the dominant discreti-
zation error is of order O�N−2�. Numerical simulations in
Sec. III are undertaken with M =N.

B. Richardson extrapolation

We note that the expression for ���� in Eq. �22� pos-
sesses a discretization error of order O�N−2�; this results from
use of the midpoint rule.26 Since this dominant error behav-
ior is known, we employ the method of Richardson extrapo-
lation to accelerate convergence using a sequence of solu-
tions for various N. This facilitates accurate numerical
solutions while using modest mesh sizes and hence moderate
values of N. The process of Richardson extrapolation is dis-
cussed by Hornbeck26 and summarized here.

We begin with n estimates �1,i �i=1, . . . ,n� for �, com-
puted on a series of meshes for which N differs by a factor of
2, i.e., N=2i−1N0, where N0 is a positive integer. The follow-
ing extrapolation formula is then used to estimate and re-
move the dominant error term in these initial results:

�l,k =
2p�l−1��l−1,k+1 − �l−1,k

2p�l−1� − 1
, �24�

where the parameter l is the iteration number and p is the
inverse power of the dominant error term, which in our case
is p=2.

This yields n−1 new estimates for �, each with the
dominant error term removed. Equation �24� is then used
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recursively until only a single value for � remains. For ex-
ample, choosing four values of N �and hence �� with an
associated error of O�N−2� results in a single value for �
whose dominant error is O�N−8� after three cycles of itera-
tion. This iteration procedure is used in Sec. III to greatly
accelerate convergence of numerical results.

III. RESULTS AND DISCUSSION

Results shall now be presented for cylinders of arbitrary
rectangular cross section and infinitely thin blades executing
in-plane and out-of-plane oscillations; see Appendixes A 1
and A 2 for solutions to the latter cases. The solution for
inviscid flow is given in Appendix B. We study the vorticity
and pressure generated at the surfaces of these two-
dimensional bodies and examine the physical implications of
these results to the net hydrodynamic load. We also present
accurate numerical results for the hydrodynamic function
���� in Table I, which is expected to be of significant value
in practical applications and numerical benchmarking of fu-
ture studies.

A. Infinitely thin blade

1. Out-of-plane oscillation

We first consider an infinitely thin blade executing out-
of-plane oscillations in a viscous fluid. The boundary integral
method of Tuck24 is used to solve this problem, an outline of
which is given in Appendix A 2. Since the quadrature
scheme used in this method is identical to that in Sec. II A,
the associated discretization error is also of order O�N−2�.
Consequently, the method of Richardson extrapolation is di-
rectly applicable, and the aim of this section is to demon-
strate its utility in accelerating convergence. This is particu-
larly important since computational time increases as N2.
The exact analytical solution presented in Ref. 25 is used to
benchmark this study.

We focus on a single value of � to demonstrate the sa-
lient features of this extrapolation procedure. In Fig. 2, we
present values of the hydrodynamic function for �=1 /4 and
various N; this value of � is chosen since accurate numerical
data �correct to six significant figures� are given in Ref. 25:
�exact=6.643 52+10.8983i. The “computed” column in Fig.
2 contains raw output from the Tuck solution, whereas data
in the columns to the right are obtained using the process of
Richardson extrapolation, i.e., Eq. �24�.

It is evident from Fig. 2 that use of Richardson extrapo-
lation greatly accelerates convergence for a given value of N.
In particular, note that � is accurately computed to six sig-
nificant figures using raw results for N=10, 20, 40, and 80
and the Richardson extrapolation procedure. This contrasts to
the raw solution for N=320 that exhibits accuracy to only
five significant figures.

As mentioned above, the computational time taken to
construct the matrix system grows with N2 due to the number
of entries in the resultant matrix. Use of a minimal value of
N is thus highly desirable for computational efficiency. For
out-of-plane oscillations of an infinitely thin blade, the ma-
trix entries can be evaluated analytically, thus facilitating
computational speed. However, for rectangular cylinders of

finite thickness and in-plane oscillations of infinitely thin
blades, some integrals require numerical evaluation; see Eqs.
�18� and �A8�. This greatly increases computational time,
and efficiency improvements through use of Richardson ex-
trapolation are thus essential to achieving highly accurate
solutions.

2. In-plane oscillation

Next, we examine the in-plane oscillations of an infi-
nitely thin blade in a viscous fluid, the solution method of
which is given in Appendix A 1. Note that the primary fluid
variable involved in determining the hydrodynamic load is
the vorticity at the blade surface; the pressure does not con-
tribute to the load. The resulting matrix-vector system in Eq.
�A7� can be readily constructed and solved using
MATHEMATICA

®, yielding the vorticity at the corresponding
mesh points. Although an exact analytical solution to this
flow problem does not exist, we can analytically examine the
solution behavior in the asymptotic limit of ��1. In this
asymptotic limit, thin viscous boundary layers exist at the
blade surfaces, the flow field of which is given by Stokes’
second problem for the oscillations of an infinite half-space
in an unbounded fluid;37 effects associated with the blade
edges exhibit a comparatively negligible effect. This yields
the following asymptotic result for the scaled vorticity at the
blade surface �away from the edges�:

� � − i�i�, � � 1. �25�

Figure 3 shows the vorticity distribution for various values of
� and the asymptotic solution for ��1. Since the vorticity is
an even function of �, results are presented for �� �0,1�
only.

Note that both the real and imaginary components of the
vorticity approach the asymptotic solution in Eq. �25� as �
increases. We emphasize that the asymptotic solution, Eq.
�25�, is not applicable in the immediate vicinity of the blade
edges. Viscous boundary layers in these regions can no
longer be considered thin and square root singularities are
observed in the full numerical solution, as expected. These
singularities are inherently captured by the choice of numeri-
cal quadrature, as discussed in Appendix A 1. These results
serve to illustrate the validity of the numerical method in
calculating the vorticity distribution across the faces of the
blade.

In contrast to the out-of-plane case, the integrals in-
volved in constructing the matrix system for in-plane oscil-
lations do not permit analytical evaluation. Since the discreti-
zation error is also of order O�N−2�, the Richardson
extrapolation procedure detailed above is used to accelerate
convergence and improve computational efficiency. This is
applied only to numerical results for the hydrodynamic func-
tion in order to achieve highly accurate solutions, since dif-
ferences in the vorticity are indiscernible in Fig. 3.

Results for the hydrodynamic function as a function of �
are given in Fig. 4. As expected, these numerical results ap-
proach the required asymptotic solution as �→�, providing
validation of the full numerical solution. Importantly, we find
that reducing � enhances the hydrodynamic load experienced
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TABLE I. Hydrodynamic function � as a function of dimensionless frequency � and aspect ratio A. Results are accurate to the number of significant figures shown. �a� Real component; �→� results have been computed
using the inviscid solution in Appendix B. �b� Imaginary component.

log10���

A

0 1/50 1/20 1/10 1/5 1/2 1 2 5 10 20 50 �

�a� �3 212.184 213.310 214.977 217.701 222.978 237.780 260.256 207.210 169.667 154.616 145.909 139.855 134.720

�2.5 91.6984 92.2467 93.0601 94.3924 96.9808 104.295 115.542 88.9011 70.8173 63.7655 59.7404 56.9653 54.6258

�2 41.6417 41.9209 42.3363 43.0185 44.3487 48.1380 54.0391 39.8564 30.6996 27.2460 25.3060 23.9817 22.8730

�1.5 20.1196 20.2683 20.4907 20.8572 21.5753 23.6370 26.8847 18.8235 13.9212 12.1457 11.1673 10.5072 9.958 83

�1 10.4849 10.5677 10.6926 10.8998 11.3080 12.4883 14.3601 9.435 36 6.646 06 5.685 11 5.168 01 4.824 11 4.540 93

�0.5 5.966 55 6.014 67 6.088 71 6.212 79 6.458 97 7.173 28 8.300 52 5.047 39 3.352 15 2.803 94 2.517 94 2.331 26 2.179 27

0 3.733 87 3.763 44 3.810 63 3.890 99 4.051 54 4.513 68 5.222 20 2.890 30 1.783 22 1.453 06 1.288 07 1.183 27 1.099 43

0.5 2.565 48 2.585 63 2.619 59 2.678 32 2.795 15 3.119 07 3.585 31 1.776 17 0.994 540 0.783 333 0.684 003 0.623 512 0.576 619

1 1.918 34 1.935 09 1.964 37 2.014 50 2.110 58 2.356 65 2.682 70 1.177 79 0.580 514 0.435 349 0.372 208 0.336 075 0.309 503

1.5 1.545 54 1.562 85 1.592 47 1.640 69 1.726 87 1.927 85 2.175 51 0.848 104 0.357 549 0.249 659 0.206 674 0.184 001 0.168 601

2 1.326 33 1.346 58 1.378 82 1.427 57 1.508 44 1.684 37 1.888 62 0.663 505 0.235 193 0.148 772 0.117 201 0.102 069 0.092 877 9

2.5 1.195 77 1.2202 1.2555 1.3051 1.3833 1.5459 1.7259 0.559 39 0.167 03 0.093 131 0.068 128 0.057 273 0.051 564 8

3 1.117 46 1.1465 1.1843 1.2346 1.3117 1.4670 1.6336 0.500 51 0.128 74 0.062 098 0.040 918 0.032 516 0.028 774 5

� 1 1.045 51 1.088 16 1.140 64 1.217 03 1.363 68 1.513 17 0.340 920 0.048 681 0 0.011 406 4 0.002 720 41 0.000 418 204 0

�b� �3 1018.72 1021.37 1025.29 1031.66 1043.88 1077.39 1126.32 1008.65 915.159 874.583 850.149 832.704 817.599

�2.5 374.276 375.392 377.040 379.721 384.873 399.079 420.012 370.057 331.318 314.778 304.899 297.884 291.835

�2 140.659 141.144 141.862 143.031 145.284 151.534 160.848 138.825 122.228 115.278 111.167 108.266 105.776

�1.5 54.4049 54.6253 54.9508 55.4818 56.5079 59.3754 63.7087 53.5749 46.1812 43.1534 41.3825 40.1420 39.0836

�1 21.8269 21.9314 22.0855 22.3371 22.8247 24.2002 26.3169 21.4324 17.9905 16.6153 15.8210 15.2692 14.8012

�0.5 9.168 70 9.220 24 9.295 87 9.419 36 9.659 73 10.3480 11.4345 8.96804 7.289 29 6.635 16 6.262 19 6.005 23 5.788 62

0 4.074 67 4.100 43 4.137 79 4.198 95 4.319 57 4.676 05 5.259 77 3.959 20 3.102 74 2.776 71 2.592 98 2.467 33 2.361 86

0.5 1.933 66 1.945 52 1.962 56 1.991 30 2.051 07 2.241 27 2.565 35 1.852 52 1.397 90 1.228 68 1.134 29 1.070 13 1.016 39

1 0.981 710 0.985 312 0.990 956 1.002 55 1.031 57 1.136 34 1.317 68 0.915 797 0.666 095 0.575 374 0.525 354 0.491 568 0.463 359

1.5 0.527 773 0.526 433 0.526 077 0.529 479 0.543 868 0.602 276 0.703 142 0.474 037 0.333 253 0.283 225 0.256 021 0.237 799 0.222 666

2 0.296 143 0.291 987 0.289 093 0.289 338 0.296 683 0.328 687 0.384 789 0.253 907 0.173 548 0.145 302 0.130 165 0.120 135 0.111 868

2.5 0.171 115 0.165 64 0.162 34 0.161 71 0.165 25 0.182 60 0.213 84 0.139 10 0.093 151 0.076 988 0.068 405 0.062 790 0.058 213 4

3 0.100 688 0.095 021 0.092 307 0.091 476 0.093 044 0.102 47 0.119 87 0.077 266 0.051 022 0.041 760 0.036 840 0.033 652 0.031 090 5
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by the blade. This is more pronounced in the dissipative
component of the load �imaginary part�, with the inertial
component �real part� exhibiting a relatively weak enhance-
ment. This contrasts to the out-of-plane result, which exhibits
similar enhancement in both inertial and dissipative compo-
nents of the load. This difference appears to be connected to
the pressure, which does not contribute to the hydrodynamic

load for in-plane motion; the hydrodynamic load for out-of-
plane motion is determined solely from the pressure distri-
bution. We will discuss further the relative contributions of
the vorticity and pressure in determining the hydrodynamic
load in Sec. III B, where we examine the oscillations of a
rectangular cylinder of finite thickness.

B. Rectangular cylinder of finite thickness

For a rectangular cylinder of finite thickness, the hydro-
dynamic load is determined by the pressure and vorticity
distributions on the leading and side faces, respectively. We
now present results for these quantities that have been ob-
tained using the theory detailed in Sec. II A. We again make
use of the inherent symmetry in the cylinder geometry and
display results only for half of the physical domain.

Figures 5–8 present results for the pressure and vorticity
distributions over the faces of a square cylinder �A=1�. Both
real and imaginary components are presented. Note that the
pressure distribution on the leading face differs markedly
from that on the side face. As � increases, the pressure dis-
tribution away from the edges asymptotes to a limiting solu-
tion that corresponds to the inviscid result.

Figure 9 presents the hydrodynamic function versus the
dimensionless frequency � for a cylinder of square cross
section, i.e., A=1. Richardson extrapolation has been em-
ployed to accelerate convergence of the numerical solution.
Also shown are numerical results for the limiting cases of an
infinitely thin blade exhibiting out-of-plane and in-plane mo-
tions. Note that scaling of the hydrodynamic load differs in
these two limiting cases; one is scaled by the width b,
whereas the other is scaled by the thickness h, as discussed
above. However, for an aspect ratio of A=1, these scalings
are identical and results for the square cross section are
hence directly comparable to both infinitely thin solutions.
Interestingly, we find that the solution for a square cylinder
closely follows that of the out-of-plane motion of an infi-
nitely thin blade. While significantly different quantitative
behavior is observed for in-plane motion of an infinitely thin
blade, similar qualitative variations as a function of � are

10 6.57971
20 6.62686 6.64258

40 6.63927 6.64341 6.64347

80 6.64245 6.64351 6.64352 6.64352

160 6.64326 6.64352 6.64352 6.64352 6.64352

320 6.64346 6.64352 6.64352 6.64352 6.64352 6.64352

10 10.8462
20 10.8849 10.8978

40 10.8949 10.8982 10.8983

80 10.8974 10.8983 10.8983 10.8983

160 10.8981 10.8983 10.8983 10.8983 10.8983

320 10.8982 10.8983 10.8983 10.8983 10.8983 10.8983

N Computed Extrapolated

(a)

(b)

N Computed Extrapolated

FIG. 2. Hydrodynamic function � for �=1 /4, �a� real and �b� imaginary
components. Richardson extrapolation used to accelerate convergence. Left-
most column gives raw solutions, while columns to its right are the results
of Richardson extrapolation.
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FIG. 3. �a� Real and �b� imaginary components of the vorticity on the top
face of the blade. Results have been computed with N=160. Dashed lines
indicate the asymptotic solution for ��1, whereas solid lines are full nu-
merical solutions.

10 50 100 500 1000 5000
1

1.5

β

Re Γ( )
Re Γ∞( )

Im Γ( )
Im Γ∞( )

In-plane (infinitely-thin)
HYDRODYNAMIC FUNCTION

FIG. 4. Real �solid line� and imaginary �dashed line� components of the
computed hydrodynamic function. Results are shown as a ratio with the
asymptotic solution �� �as �→�� defined in Eq. �A10�. Results have been
computed with N=10,20,40,80 and extrapolated.
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witnessed, i.e., both real and imaginary components of the
hydrodynamic load decrease as � increases. This is due to
the viscous penetration depth over which vorticity diffuses,
decreasing with increasing frequency.

Knowledge of dependence of the hydrodynamic function
on the cylinder aspect ratio is of critical practical importance,
since many microelectromechanical systems and NEMS de-
vices use rectangular cylinders of arbitrary aspect
ratio.20–23,38 Importantly, it is frequently assumed that a cyl-
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Finite thickness (A = 1)
VORTICITY

(b)

FIG. 5. Vorticity distribution on the leading face of a square cylinder �A
=1�. �a� Real component; �b� imaginary component. Results computed with
N=80.
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FIG. 6. Pressure distribution on the leading face of a square cylinder �A
=1�. �a� Real component; �b� imaginary component. Results computed with
N=80.
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FIG. 7. Vorticity distribution on the side face of a square cylinder �A=1�. �a�
Real component; �b� imaginary component. Results computed with N=80.
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FIG. 8. Pressure distribution on the side face of a square cylinder �A=1�. �a�
Real component; �b� imaginary component. Results computed with N=80.
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inder whose thickness is much smaller than its width can be
approximated by one which is infinitely thin. The results in
Fig. 9 provide some insight into the validity of this approxi-
mation. We now fully explore the regime of validity of this
commonly used approximation, the results of which are pre-
sented in Fig. 10. The limiting cases of an infinitely thin
blade executing in-plane �A→�� and out-of-plane �A→0�
motions are also presented. Note that the cusps observed in
Fig. 10 at A=1 are a consequence of different geometric
scalings for A�1 and A�1. From Fig. 10, it is immediately
evident that in-plane motion �A�1� is much more sensitive
to finite cylinder thickness than out-of-plane motion �A�1�.

The differences observed in Fig. 10 are quantified in
Tables II and III for �=10. Similar results are obtained
across the range 1 /10���10 and are hence not presented
here. These tables give the percentage relative difference be-
tween the hydrodynamic load for �i� rectangular cylinders of
various aspect ratios A and �ii� the corresponding infinitely
thin blades. Note that the effect of finite blade thickness dif-
fers markedly for in-plane and out-of-plane motions. For ex-
ample, comparing the results for in-plane motion of an infi-
nitely thin blade �A→�� with that of a thin rectangular
cylinder, A=10, we find that the hydrodynamic load differs
by 41% and 24% in the real and imaginary components,
respectively. For out-of-plane motion, however, the differ-
ences between the infinitely thin case �A→0� and a thin
rectangular cylinder of identical geometry, A=1 /10, are only
5.0% and 2.1% for the real and imaginary components,
respectively.

We remind the reader that in-plane and out-of-plane mo-
tions of a thin rectangular cylinder are selected using the

aspect ratio in the present formulation—a cylinder of aspect
ratio A that undergoes in-plane motion will possess an aspect
ratio of 1 /A for out-of-plane motion. Furthermore, the con-
cept of in-plane and out-of-plane motions is only pertinent in
cases where either A�h /b�1 or h /b�1, since one length
scale of the cylinder greatly exceeds the other.

These results demonstrate that the hydrodynamic load
induced by a thin rectangular cylinder of finite aspect ratio,
A=1 /10, is well approximated by that of an infinitely thin
blade undergoing out-of-plane motion. The agreement im-
proves dramatically as the aspect ratio is reduced further, and
we observe an order-of-magnitude improvement in the rela-
tive difference with an order-of-magnitude decrease in A.

0.1 0.5 1 5 10 50 100

0.2
0.5
1
2
5
10
20

Re
Γ (
)

β

Finite thickness vs. Infinitely-thin
HYDRODYNAMIC FUNCTION

(a)

0.1 0.5 1 5 10 50 100

0.2
0.5
1
2
5
10
20

β

Im
Γ (
)

Finite thickness vs. Infinitely-thin
HYDRODYNAMIC FUNCTION

(b)

FIG. 9. Hydrodynamic function: �a� real component, �b� imaginary compo-
nent. Results for A=1 �solid line� are shown alongside the infinitely thin
results for out-of-plane �dashed line� and in-plane �dotted line� motions.
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FIG. 10. �a� Real and �b� imaginary components of the hydrodynamic func-
tion shown as a function of aspect ratio. Results have been computed for
�=1 /10,1 ,10 and are shown alongside the corresponding infinitely thin
limiting cases �horizontal dotted lines�.

TABLE II. Percentage relative difference between the hydrodynamic func-
tions for an infinitely thin blade executing in-plane motion and a cylinder of
finite aspect ratio. Results are given for �=10 and N=10,20,40,80,160
from which Richardson extrapolation is used.

A

Percentage difference

Real Imaginary

� ¯ ¯

50 8.6 6.1

20 20 13

10 41 24

5 88 44

2 281 98

1 767 184
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Even for thick cylinders, up to an aspect ratio of A=1 /2, the
error induced by approximating the cylinder by an infinitely
thin blade is only approximately 20%.

In contrast, in-plane motion does not display the same
level of agreement as that exhibited by out-of-plane motion.
The percentage relative differences for the same cylinder
shape, i.e., Ain-plane=1 /Aout-of-plane, are approximately an order
of magnitude larger than those for out-of-plane motion; see
Table II. This indicates that the infinitely thin approximation
for in-plane motion should only be used for extremely thin
blades, e.g., A�50 if accuracy better than 10% is required.

The underlying reason for the difference between the
in-plane and out-of-plane results is due to the effects of pres-
sure. For in-plane motion of an infinitely thin blade, the hy-
drodynamic load is unaffected by the pressure in the fluid,
whereas the pressure is the only contributor for out-of-plane
motion. Increasing the cylinder thickness from this limiting
case then results in a nonzero pressure contribution in the
in-plane case at the leading faces of the cylinder. This has a
dramatic effect and strongly enhances the overall hydrody-
namic load. The results for in-plane and out-of-plane mo-
tions demonstrate that �i� the pressure contribution from the
leading face dominates �ii� the contribution from the vortic-
ity �shear stress� on the side face in determining the overall
hydrodynamic load.

Importantly, the inviscid result ��→�� establishes that
the inertial component of the hydrodynamic load is enhanced
for a cylinder of finite thickness executing out-of-plane mo-
tion in comparison to the infinitely thin result. Since this load
is only dependent on the pressure distribution across the
leading face, see Eq. �20�, we find that the net pressure jump
across the cylinder is enhanced by increasing the cylinder
thickness; see Appendix B for a detailed discussion. Results
for the viscous case are consistent with this observation, with
the added effect of the viscous boundary layer enhancing
both the inertial and dissipative components of the load.
Comparison of the inviscid and viscous cases for high �
shows that enhancement due to the viscous boundary layer
and the increase in the inviscid component of the pressure
accounts for the marked differences between results for the
real and imaginary components in Tables II and III. Namely,

for a cylinder of finite thickness the imaginary component
displays better agreement with the infinitely thin result than
the real component.

C. Practical implications to AFM cantilever calibration

These findings are of great significance in practice, since
they provide rigorous justification for the current widespread
use of the infinitely thin blade approximation for out-of-
plane motion of oscillating beams of finite thickness.9–15 This
is particularly the case for standard experimental techniques,
such as the Sader method,31–35 that use the infinitely thin
blade out-of-plane solution as their foundation for quantita-
tive measurement of the stiffness of AFM microcantilevers.
Importantly, all practical cantilevers possess a finite aspect
ratio �thickness/width�. However, the results in Table III es-
tablish that there is very little difference in the hydrodynamic
load between such practical devices and their infinitely thin
counterparts. As such, successful and accurate calibration of
AFM microcantilevers using these techniques does not rely
on accurate knowledge of the microcantilever thickness.

Importantly, better agreement is observed for the imagi-
nary component than for the real component of the hydrody-
namic function, see Table III and discussion above. This is
particularly significant, since the Sader method relies only on
the imaginary component of the hydrodynamic function—
the measured spring constant is directly proportional to the
hydrodynamic function �Eq. �4� of Ref. 31�,

k = 0.1906�b2LQ�i��R��R
2 , �26�

where k is the cantilever normal spring constant, � is the
fluid density, b the cantilever width, L its length, �R the
resonant frequency in fluid �air�, Q is the quality factor in
fluid �air�, and �i the imaginary component of the hydrody-
namic function for out-of-plane motion of an infinitely thin
blade.

We note that intrinsic errors in AFM measurements typi-
cally exceed 10%, and are thus larger than many of the en-
tries in Table III. The present findings therefore enable use of
�infinitely thin blade� techniques for calibration of thick mi-
crocantilever beams, with little compromise in accuracy. For
example, Eq. �26� will exhibit an error of only 16% for a
relatively thick cantilever beam of aspect ratio �thickness/
width� A=1 /2 �at �=10�.

IV. CONCLUSIONS

We have theoretically investigated the flow generated by
oscillating rectangular cylinders of arbitrary aspect ratio
�thickness/width� immersed in fluid. Both the general vis-
cous case and the inviscid limit were considered. The under-
lying principal assumptions were that the oscillation ampli-
tude is small and the flow is incompressible. Both
assumptions are satisfied in many cases of practical interest,
including devices found in the AFM and NEMS. Since com-
mon elastic beam devices found in practice possess aspect
ratios that deviate strongly from the infinitely thin limit, the
results presented in this study are expected to be of signifi-
cant practical value.

TABLE III. Percentage relative difference between the hydrodynamic func-
tions for an infinitely thin blade executing out-of-plane motion and a cylin-
der of finite aspect ratio. Results given for �=10 and N
=10,20,40,80,160 from which Richardson extrapolation is used.

A

Percentage difference

Real Imaginary

0 ¯ ¯

1/50 0.87 0.37

1/20 2.4 0.94

1/10 5.0 2.1

1/5 10 5.1

1/2 23 16

1 40 34
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Importantly, it was found that the infinitely thin blade
solution provides an excellent approximation for out-of-
plane oscillations of rectangular cylinders of finite aspect ra-
tio �thickness/width�: A�1 /2 ensures accuracy better than
approximately 20% in the hydrodynamic load. This provides
rigorous justification for use of the infinitely thin blade ap-
proximation for out-of-plane oscillations of beams in prac-
tice. This is particularly relevant for device characterization
techniques found in the AFM and NEMS, where the infi-
nitely thin blade formulation is common place.

The situation changes dramatically for in-plane oscilla-
tions, however, where the infinitely thin result is valid only
for extremely thin blades: A�50 is required for accuracy
better than approximately 10%. This result establishes the
critical importance of the size of the leading face for in-plane
oscillations of thin beams. The difference between the out-
of-plane and in-plane results is due to the pressure contribu-
tion at the leading face being modified more strongly in the
in-plane case relative to the infinitely thin result.

Finally, a database of highly accurate numerical results
was presented for a wide range of aspect ratios and normal-
ized frequencies. This is expected to find significant utility in
characterization of devices found in AFM and NEMS, and in
the benchmarking of future numerical schemes and analyti-
cal solutions.

ACKNOWLEDGMENTS

The authors would like to thank Igor Bargatin and
Michael Roukes for many interesting discussions relating to
NEMS devices. This research was supported by the Austra-
lian Research Council Grants Scheme.

APPENDIX A: INFINITELY THIN BLADES

1. In-plane oscillation

We consider an infinitely thin blade oscillating in its own
plane, subject to the no-slip boundary condition. To do so,
we use the streamfunction presented in Eq. �9� and consider
the contour Cblade=C++C− where C+ and C− are the “top”
and “bottom” sides of the cut extending from �−a ,0� to �a ,0�
in the �y ,z� plane; see Fig. 1�b�. Under such conditions, Eq.
�9� reduces substantially to become

��y�,z�� = − Ucylz� + �
−a

a

2	̄�y�
z�y,0;y�,z��

−
1

�
�p̄�y�
y�y,0;y�,z��dy , �A1�

where 	̄= 	̄+=−	̄− is the vorticity distribution across the top
face of the blade. By symmetry, the pressure difference
�p̄�y� across the blade is equal to zero. Noting this, and
setting z�=0 after differentiating Eq. �A1� with respect to z�,
we obtain the following integral equation:

2�
−a

a

	�y�
zz��y,0;y�,0�dy = Ucyl. �A2�

We have dropped the “bar” notation for 	�y� since the mea-
sured vorticity is the same as in the reference frame of the

blade. Introducing the dimensionless spatial coordinate �
=y /a, vorticity ����= �a /Ucyl�	�y�, and frequency �
=�a2 /
, the integral equation becomes

2�
−1

1

����Lin�− i�i��� − ����d� = 1, �A3�

where the kernel function is defined as

Lin�Z� =
1

2�Z

d

dZ
�log Z + K0�Z�� . �A4�

We note that the in-plane motion of the blade is described by
the above integral equation involving only the vorticity dis-
tribution along the contour. Note also the behavior of the
kernel function for small and large values of its argument,

Lin�Z� = −
1

4�
�log Z + � −

1

2
− log 2�

+ O�Z2 log Z� for Z � 1, �A5�

Lin�Z� =
1

2�Z2 −
1

�8�Z
e−Z� 1

Z
+ O� 1

Z2�� for Z � 1.

�A6�

The integral equation, Eq. �A3�, for the vorticity distri-
bution is solved numerically. This involves discretizing the
domain �� �−1,1�. This integral equation is then trans-
formed into a matrix-vector equation using an appropriate
quadrature method and solved. Before implementing this
procedure, we note the following features relating to Eq.
�A3�; these are identical to those discussed by Tuck24 for the
out-of-plane case:

�1� The presence of the logarithmic singularity in the kernel
function at �=��.

�2� The blade under consideration is infinitely thin. At the
leading edges, we expect the presence of a square-root
singularity.24 That is, we anticipate square-root singu-
larities in ���� at �= �1.

�3� If � is large, then the exponential term in Eq. �A6� os-
cillates rapidly as it approaches zero.

Given these similarities between the in-plane and out-of-
plane cases, we implement an identical numerical scheme to
that proposed by Tuck for this in-plane case. Specifically,
the interval is discretized using the points �=� j

=−cos��j /N� , j=0, . . . ,N and we approximate ���� as a
constant on each interval. However, the kernel function Lin in
the quadrature method is not approximated in each interval.
We ensure the equation holds at the midpoint of each inter-
val, �=�k�= 1

2 ��k+�k+1�. Using Eq. �A3� and approximating
����=� j =const on each interval � j ���� j+1 results in the
following equation:

Min� = 1 , �A7�

with corresponding matrix elements
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�Min�kj = 2�
�j

�j+1

Lin�− i�i��� − �k���d� . �A8�

Evaluation of the elements of Min requires numerical com-
putation, and we use the software package MATHEMATICA

®

for this purpose. After calculation of the vorticity distribu-
tion, the hydrodynamic function is evaluated using Eq. �11�.
Recalling the definitions for the scaled quantities and noting
that the dominant length scale is 2a, we obtain

���� =
2i

��
�

−1

1

����d� =
2i

��


j=0

N−1

�� j+1 − � j�� j + O�N−2� .

�A9�

Since the blade is infinitely thin in the z-direction, the ficti-
tious body force contribution �see Eqs. �8� and �11�� resulting
from the change in reference frame is zero.

a. High-frequency limit

In the limit of high frequency, in-plane oscillations of an
infinitely thin blade in the fluid will generate a thin viscous
boundary layer near its surface. In this limit, the fluid does
not see the width of the blade, thus facilitating the use of an
infinite plate solution. Using the well-known solution to
Stokes’ second problem,37 we find that the hydrodynamic
function can be expressed as

����� =
4

�
� i

�
. �A10�

The length scale in Eq. �A10� has been implicitly removed
by expressing the hydrodynamic function in terms of the
dimensionless frequency �.

2. Out-of-plane oscillation

This problem was originally solved by Tuck,24 a sum-
mary of which is given here. By considering the contour
Cblade=C++C− where C+ and C− are the “right” and “left”
sides of the cut extending from �0,−d� to �0,d� in the �y ,z�
plane, the following integral equation is obtained:

2�
−1

1

P���Lout�− i�i��� − ����d� = 1, �A11�

where the kernel function is defined as

Lout�Z� =
1

2�

d2

dZ2 �log�Z� + K0�Z�� , �A12�

and the scaled frequency, spatial coordinate, and pressure are
given by �=�d2 /
, �=z /d, and P���= �d /�Ucyl�p�z�, re-
spectively. In a manner completely analogous to the case of
in-plane oscillation, the hydrodynamic function is then writ-
ten in the discretized form

���� =
2i

��
�

−1

1

P���d� =
2i

��


j=0

N−1

�� j+1 − � j�Pj + O�N−2� .

�A13�

The above expression is used to calculate the hydrodynamic
function presented in Sec. III A 1.

APPENDIX B: INVISCID FLOW

1. Exact solution

We now consider the case of inviscid flow. This corre-
sponds to the formal asymptotic limit of infinite dimension-
less frequency, i.e., �→�. The flow is again considered to
be incompressible throughout and is solved using potential
flow theory. The velocity field u is related to the velocity
potential � by

u = �� . �B1�

The solution to this flow problem is obtained using complex
variable analysis. Specifically, conformal mapping of the
original cylinder geometry onto a half-space enables the flow
field and resulting force to be determined directly. Since the
flow is symmetric about the z-axis �see Fig. 1�a��, its solution
can be obtained by considering only the region y�0; see
Figs. 11�a� and 11�b�. Note that the calculation is performed
in the reference frame of the cylinder as for the viscous case.
As such, an additional body force must be included in the
final force calculation, as specified in Eq. �8�.

The original cylinder geometry in the Z-plane is mapped
onto the W-plane using the conformal mapping

z

y

2 = 0
h
2 i b2

h
2

h
2

h
2 i b2+

i b2

ẑ y = Ucyl

n = 0

Z - plane
(a)

0−1 1 τ−τ

u

v
2 = 0

v̂ v = CUcyl

W - plane

n = 0

~

~

~

(b)

FIG. 11. �a� Schematic diagram showing the upper half of cylinder in the
original complex Z-plane. Boundary conditions are as indicated. Z=z+ iy.
�b� Schematic diagram showing the upper half-space of cylinder in the trans-
formed complex W-plane. Transformed Laplacian indicated by the tilde.
Transformed boundary conditions as indicated. W=u+ iv.
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Z = C�
0

W/��1 − �2	2

1 − 	2 d	 +
bi

2
, �B2�

where

C =
b

2��E�1 − m� − mK�1 − m��
, �B3�

and K and E are complete elliptic integrals of the first and
second kinds, respectively. The parameter m�1 /�2 is the
root of the transcendental equation

E�m� − �1 − m�K�m�
E�1 − m� − mK�1 − m�

=
h

b
. �B4�

This mapping is easily derived using the Schwarz–
Christoffel transformation27 with reference to Figs. 11�a� and
11�b�. Note that �i� Z=z+ iy, W=u+ iv, and �ii� since ��1,
we find that 0�m�1.

The solution to the Laplace equation for the velocity
potential � in the W-plane is simply

� = − CUcylu , �B5�

from which the reduced pressure is

p̄ = − i��CUcylu . �B6�

The total force acting on the cylinder is then obtained by
integrating the stress vector. This is easily performed in the
complex domain by transforming the resulting integral in the
Z-plane into the W-plane. Incorporating the fictitious body
force specified in Eq. �8� then yields

j · F = 4i��UcylC
2�

1

�

W� W2 − 1

�2 − W2dW − i��Ucylbh ,

�B7�

which reduces to

j · F = i��Ucyl����2 − 1�C2 − bh� . �B8�

Substituting Eq. �B3� into Eq. �B8�, and using the definition
in Eq. �11�, then gives the required exact result for the hy-
drodynamic function in the inviscid limit

���� =
b2

X2� 1 − m

�E�1 − m� − mK�1 − m��2 −
4h

�b
� , �B9�

where m is the solution to Eq. �B4� and X=max�h ,b�=2�.

2. Asymptotic results

Equation �B9� can be explicitly solved in the asymptotic
limits of small and large h /b to yield

���� � 1 −
2h

�b
�3 + log� h

4�b
�� + O��h

b
�2�,

h

b
� 1

�B10�

and

���� �
2b2

�2h2�1 + 2 log�4�h

b
�� + O��b

h
�3�,

h

b
� 1.

�B11�

A comparison of these asymptotic results to the exact
solution is given in Fig. 12, where good agreement is ob-
served in the limits of small and large h /b. Note that the
hydrodynamic function has been normalized so that the
width b of the cylinder is the dominant length scale for all
aspect ratios A. This differs from the convention used above,
but permits direct physical interpretation of the numerical
results.39 Specifically, Fig. 12 illustrates how the true hydro-
dynamic load varies as the thickness h is increased while the
width b is held constant. Interestingly, we observe that the
hydrodynamic load rises monotonically as the thickness is
increased and asymptotes to a weak logarithmic dependence
at large thickness. For example, in the case where the thick-
ness h is 10 000 times larger than the width b, the hydrody-
namic load is only a factor of 5 larger than the infinitely thin
�zero thickness� case.

The asymptotic analytical results in Eqs. �B10� and
�B11� contrast to previous formulas in the literature. Specifi-
cally, Yu30 and Payne28,29 reported thickness corrections of
O��h /b� to the infinitely thin blade result of �=1 when
h /b�1, rather than the logarithmic correction observed in
Eq. �B10�. Importantly, these previous theoretical results
were obtained either by empirical or heuristic means, and
thus have no formal mathematical basis. A similar conclusion
is obtained in the opposite limit of h /b�1.
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